48 research outputs found

    From early draping to haute couture models: 20 years of research

    Get PDF
    Simulating the complex fashion garments of haute couture can only be reached through an optimal combination of modeling techniques and numerical methods that combines high computation efficiency with the versatility required for simulating intricate garment designs. Here we describe optimal choices illustrated by their integration into a design and simulation tool that allow interactive prototyping of garments along drape motion and comfortability tests on animated postures. These techniques have been successfully used to bring haute couture garments from early draping of fashion designers, to be simulated and visualized in the virtual worl

    Stop-and-go cloth draping

    Get PDF
    The aim of cloth draping is to compute the rest state of a piece of cloth, possibly in contact with other solid objects, as quickly as possible. The context of free motion and very large deformations specific to cloth simulation makes the usual energy minimization schemes traditionally used in mechanical engineering inefficient. Therefore, most cloth draping applications only rely on dynamic simulation with ad hoc viscous damping or the dissipative behavior of numerical integration methods for obtaining convergence to the rest position of the cloth. We propose a "stop-and-go” technique which cuts out the velocity of the object at particular times for converging to the rest state, while taking advantage of the natural cloth motion toward equilibrium. This scheme can very easily complement any existing dynamical cloth simulation system, using either implicit or explicit numerical integration method

    Motion study of the hip joint in extreme postures

    Get PDF
    Many causes can be at the origin of hip osteoarthritis (e.g., cam/pincer impingements), but the exact pathogenesis for idiopathic osteoarthritis has not yet been clearly delineated. The aim of the present work is to analyze the consequences of repetitive extreme hip motion on the labrum cartilage. Our hypothesis is that extreme movements can induce excessive labral deformations and lead to early arthritis. To verify this hypothesis, an optical motion capture system is used to estimate the kinematics of patient-specific hip joint, while soft tissue artifacts are reduced with an effective correction method. Subsequently, a physical simulation system is used during motion to compute accurate labral deformations and to assess the global pressure of the labrum, as well as any local pressure excess that may be physiologically damageable. Results show that peak contact pressures occur at extreme hip flexion/abduction and that the pressure distribution corresponds with radiologically observed damage zones in the labru

    From measured physical parameters to the haptic feeling of fabric

    Get PDF
    Abstract real-time cloth simulation involves the solution of many computational challenges, particularly in the context of haptic applications, where high frame rates are necessary for obtaining a satisfactory tactile experience. In this paper, we present a real-time cloth simulation system that offers a compromise between a realistic physically-based simulation of fabrics and a haptic application with high requirements in terms of computation speed. We place emphasis on architecture and algorithmic choices for obtaining the best compromise in the context of haptic applications. A first implementation using a haptic device demonstrates the features of the proposed system and leads to the development of new approaches for haptic rendering using the proposed approac

    Abstract

    No full text
    Robust handling of collisions on non-oriented deformable surfaces requires advanced methods for recovering intersecting surfaces. We present a novel method that resolves intersections between two intersecting surface regions by inducing relative displacements which minimize the length of the intersection contour between them. This method, which does not rely on intersection regions, has a broader application field than existing methods, and its implementation is also much simpler, allowing integration into most existing collision response schemes. We demonstrate the efficiency of this method through examples in the context of cloth simulation

    Collision and self-collision detection: Efficient and robust solutions for highly deformable surfaces

    No full text
    We present an efficient algorithm for detecting self collisions, as well as some techniques for evaluating collision inside-outside orientation in a robust way. As presented in [VOL 94], we detect collisions using a hierarchical algorithm that takes advantage of curvature properties giving us full power of hierarchical algorithms for self-collision situations. Determining the collision orientation may become a complex problem dealing with complex collisions reulting from highly deformable surfaces. We use collision remnance and consistency correction for computing collision orientation in a robust way, for accurate collision response in simulations involving highly deformed and wrinkled surfaces
    corecore